Searching for hotspots within a hotspot :

Stacked species distribution models provide new opportunities to map species richness in New Caledonia

Robin Pouteau, É. Bayle, É. Blanchard, P. Birnbaum, J.-J. Cassan, V. Hequet , T. Ibanez, H. Vandrot

Institut de recherche pour le développement

Introduction THE NEED FOR FINE-SCALE BIODIVERSITY MAPS

Biodiversity hotspots for conservation priorities

Norman Myers*, Russell A. Mittermeier†, Cristina G. Mittermeier†, Gustavo A. B. da Fonseca‡ & Jennifer Kent§

Contents lists available at Science Direct Biological Conservation

journal homepage: www.elsevier.com/locate/biocon

Hotspots within hotspots: Endemic plant richness, environmental drivers, and implications for conservation

Eva M. Cañadas^{a,b,*}, Giuseppe Fenu^a, Julio Peñas^b, Juan Lorite^b, Efisio Mattana^{a,c}, Gianluigi Bacchetta^a

Conservation Biology 📚

Contributed Paper

Plant Diversity Hotspots in the Atlantic Coastal Forests of Brazil

CHARLOTTE MURRAY-SMITH,*‡ NEIL A. BRUMMITT,* ARY T. OLIVEIRA-FILHO,† STEVEN BACHMAN,* JUSTIN MOAT,* EIMEAR M. NIC LUGHADHA,* AND EVE J. LUCAS*§

Biodiversity hotspots: reservoirs of biodiversity under threat from humans

Conservation of an entire biome is impossible, and strategies must focus on small areas that represent a maximum of the biome's diversity and endemism

Smaller local hotspots must be

Introduction HOW TO MAP BIODIVERSITY?

Macroecological mode

Himalayas Bhattarai & Vetaas (2003)

Mesoamerica Sanchez-Gonzalez & Lopez-Mat

New Zealand Tomasetto *et al.* (2013)

Introduction HOW TO MAP BIODIVERSITY?

- Macroecological mode
- → Time- and cost-demar

HOW TO MAP BIODIVERSITY?

- Macroecological models?
 → Time- and cost-demanding
- Point-to-grid maps?
 Guinean Forests of West
 Africa

Droissart et al. (2006)

New Caledonia Wulff *et al.* (2012)

Indo-Burma Tovaranonte *et al*. (2014)

Mediterranean Basin Cañadas *et al*. (2014)

HOW TO MAP BIODIVERSITY?

- Macroecological models?
 → Time- and cost-demanding
- Point-to-grid maps?
- → Not accurate at fine scale Graham & Hijmans (2006)

HOW TO MAP BIODIVERSITY?

- Macroecological models?
 → Time- and cost-demanding
- Point-to-grid maps?
- → Not accurate at fine scale Graham & Hijmans (2006)
- Stacked species distribution models? *Sundaland* (Raes *et al.* 2009) *Atlantic Forest* (Murray-Smith *et al.* 2009)
 - Tumbes-Choco-Magdalena

HOW TO MAP BIODIVERSITY?

- Macroecological models?
 → Time- and cost-demanding
- Point-to-grid maps?
- → Not accurate at fine scale Graham & Hijmans (2006)
- Stacked species distribution models?
- → Time- and cost-effective
- → Accurate at fine scale

S-SDM ACCURACY ASSESSMENT

3 studies have used comprehensive plot inventories to assess S-SDMs Guisan *et al.* (1999); Dubuis *et al.* (2012); Pottier *et al.* (2013)

Increasing Unpredictable environment extrem al filtering environments: snow, rocky and

S-SDM ACCURACY ASSESSMENT

3 studies have used comprehensive plot inventories to assess S-SDMs Guisan *et al.* (1999); Dubuis *et al.* (2012); Pottier *et al.* (2013)

Increasing environment al filtering Unpredictable extrem environments: snow, rocky and

We need a study in a non-glacial and fully vegetated area such as in the

Alpine grassland and tundra

Tropical montane cloud forest

THE INDIRECT AREA EFFECT ON S-SDM ACCURACY

 $S = c A^z$ Arrhenius (1921)

S: # species; **c**: # species per square unit; **A**: regional area; **z**: constant

The conical shape of mountains decreases the regional species richness

THE INDIRECT AREA EFFECT ON S-SDM ACCURACY

The regional species richness is correlated to the local species richness

AIM

- Are S-SDMs able to map local species richness in a biodiversity hotspot?
- How does S-SDM accuracy vary along an environmental gradient in tropical mountains?
- And why?

- 1) Increasingly unpredictible environment?
- 2) Indirect area effect?

NEW CALEDONIA

Megadiverse:
 > 3300 vascular plant species, 75% of

NEW CALEDONIA

Urbanization

Invasive alien species

SPECIES, OCCURRENCE AND BIODIVERSITY DATA

562 tree, tree fern and palm species

At least one individual with a DBH > 10 cm within the NC-PIPPN plot

>10,000 herbarium specimens

11 independent 1 ha evaluation plots

S-SDM IMPLEMENTATION

ACCOUNTING FOR THE INDIRECT AREA EFFECT

• Elevation ranges determined by using the minimum and maximum elevations where a species occurs Wang *et al.* (2007); McCain & Grytnes (2010);

Tang *et al.* (2014)

ACCOUNTING FOR THE INDIRECT AREA EFFECT

 Elevation ranges determined by using the minimum and maximum elevations where a species occurs

Wang *et al.* (2007); McCain & Grytnes (2010); Tang *et al.* (2014)

 Species richness estimated by <u>summing all el</u>evation ranges

Materials and methods ACCOUNTING FOR THE INDIRECT AREA EFFECT

- Elevation ranges determined by using the minimum and maximum elevations where a species occurs Wang et al. (2007); McCain & Grytnes (2010); Tang et al. (2014)
- Species richness estimated by summing all elevation ranges
- z parameter determined as the slope of the species-area curve on a log-log scale (McCain 2007)

 $S = c A^{z}$ Arrhenius (1921) S: # species; c: # species per square unit; A: regional area; z: constant

ACCOUNTING FOR THE INDIRECT AREA EFFECT

- Elevation ranges determined by using the minimum and maximum elevations where a species occurs Wang et al. (2007); McCain & Grytnes (2010); ng et al. (2014) Species richness estimated by Tang et al. (2014)
- Species richness estimated by summing all elevation ranges
- z parameter determined as the slope of the species-area curve on a log-log scale (McCain 2007)
- The area-dependent species richness S determined by multiplying S-SDM estimates by A^z

 $S = c A^z$ Arrhenius (1921) S: # species; c: # species per square unit; A : regional area; z: constant

Elevation (m)

S-SDM ACCURACY DECREASES WITH ELEVATION

- No correlation between S-SDM overestimation and variables other than elevation (r² < 0.15)
- Significant correlation between S-SDM overestimation and elevation (r² = 0.71*)

S-SDM ACCURACY DECREASES WITH ELEVATION

- No correlation between S-SDM overestimation and variables other than elevation (r² < 0.15)
 - Significant correlation between S-SDM overestimation and elevation (r² = 0.71*)
- Accounting for the indirect area effect allows decorrelating overestimation

S-SDMs ARE ABLE TO MAP ALPHA DIVERSITY

 No correlation between unadjusted S-SDM estimates and empirical species richness (r² = 0.03)

Measured tree species richness

S-SDMs ARE ABLE TO MAP ALPHA DIVERSITY

 No correlation between unadjusted S-SDM estimates and empirical species richness (r² = 0.03)

Significant correlation

OTHER CAUSES THAT MIGHT INFLUENCE S-SDM ACCURACY

- Difference between relative suitability and true occupancy probability that only presence-absence SDMs are able to provide (Guillera-Arroita *et al.* 2014)
- Micro-topography neglected by our 100 m-resolution GIS variables
- The variety of forest dynamic stages observed in evaluation plots
- Dispersal limitation and narrow-range endemism that can induce commission errors
- Species that are present in independent inventories but with a DBH < 10 cm

Conclusion

TAKE HOME MESSAGE

S-SDM

Spati al bias

LOCAL SPECIES

Conclusion

TAKE HOME MESSAGE

S-SDM

ABIOTIC

ENVIRONME

Oleti - Merci - Thank you for your attention

robin.pouteau@ird.fr

Pouteau, R. *et al*. Ability of a stacked species distribution model to map species richness in a biodiversity hotspot decreases with elevation: the need to account for the indirect area effect. Diversity and Distributions. Accepted with modifications.